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Abstract. The transfer operator due to Bogomolny provides a convenient method for obtaining
a semiclassical approximation to the energy eigenvalues of a quantum system, no matter what
the nature of the analogous classical system. In this paper, the method is applied to integrable
systems which are rotationally invariant, in two and three dimensions. In two dimensions, the
transfer operator is expanded in a Fourier series in the angle variable, while in three dimensions
it is expanded in spherical harmonics. In both cases, when the Fourier coefficients are evaluated
using the stationary phase approximation, we arrive at the Einstein–Brillouin–Keller quantization
conditions. The associated Maslov indices are shown to agree with the results calculated by well
known simple rules. The theory is applied to several rotationally invariant systems, including
the hydrogen atom and the isotropic harmonic oscillator in two and three dimensions, the circle
billiard, a billiard inside a spherical cavity, and a harmonic potential with a singular magnetic
flux line.

1. Introduction

In furthering our understanding of the relationship between classical mechanics and quantum
mechanics, semiclassical approximations play an important role. Periodic orbit theory,
developed by Gutzwiller, Balian and Bloch, Berry and others [1–3] employs the periodic
orbits of the classical system to obtain a semiclassical approximation to the density of states
or to individual energy eigenvalues of the analogous quantum system. Although formally
elegant and satisfying, the theory is usually hard to apply in practice, because the periodic
orbit sum is not absolutely convergent, and because it is difficult to find the periodic orbits
in a systematic way. Alternative semiclassical approximations, which do not depend on
knowing the periodic orbits, have been proposed by Bogomolny [4, 5] and by Doron and
Smilansky [6, 7]. Exploiting the duality between the classical dynamics of a billiard inside a
bounded region and the scattering of external particles by the system’s boundary, Doron and
Smilansky obtained semiclassical energy eigenvalues for the billiard system by constructing
a semiclassical approximation to the scattering matrix for the exterior problem. In the
theory proposed by Bogomolny, one chooses a Poincaré surface of section (PSS) which
is frequently crossed during the motion of the system, and one constructs a semiclassical
transfer operator from the classical trajectories which take the system from one position
on the PSS to another. For billiard systems, the approaches based on the scattering matrix
and on the transfer operator can be shown to yield the same determinantal equation for the
energy eigenvalues of the interior system [4, 8].

This paper had its origin in trying to derive the correct quantum energy eigenvalues of
the hydrogen atom (in three dimensions) by means of Bogomolny’s semiclassical transfer
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operator. By adding a small 1/r2 term to the Coulomb potential—a device which prevents
the transfer operator from being singular—we achieved this goal. However, an essential
part of the derivation was the use of the stationary phase approximation. Subsequently, we
generalized our approach and showed that it led to the well known Einstein–Brillouin–Keller
(EBK) quantization rules [9–12]. When viewed in this light, there is nothing special about
our solution for the hydrogen atom. In fact, the main result of our paper can be summed up
concisely: for rotationally invariant integrable systems, Bogomolny’s transfer operator, plus
the stationary phase approximation, yields EBK quantization. In a separate publication [13]
we plan to show how the EBK quantization rules can also be obtained from Bogomolny’s
transfer operator formulated in terms of the angle-action variables.

The plan of the paper is as follows. After a brief description of the transfer operator
in the next section, in section 3 we construct the transfer operator for a two-dimensional
system having circular symmetry. By making a suitable Fourier expansion and evaluating
the Fourier coefficients by means of the stationary phase approximation, we derive the EBK
quantization conditions. This general formulation is applied in section 4 to the hydrogen
atom (plus 1/r2 potential), the circular harmonic oscillator (plus 1/r2 potential), a harmonic
potential plus a singular magnetic flux line, the circle billiard, and the annulus billiard. In
section 5 a similar approach is described for three-dimensional systems having spherical
symmetry. The resulting EBK quantization conditions are applied in section 6 to the
hydrogen atom (plus 1/r2 potential), the isotropic harmonic oscillator (plus 1/r2 potential),
and a billiard inside a spherical cavity. The paper concludes with a discussion of our results
for the EBK energy eigenvalues in comparison with the exact quantum energies.

2. The transfer operator and the determinantal equation

We begin with a brief description of Bogomolny’s semiclassical transfer operator. For a
system withf freedoms, the PSS in configuration space is a surface or hypersurface of
dimensionf − 1, and the transfer operator in the coordinate representation is [4]

T (q ′′, q ′;E) =
∑
cl.tr.

1

(2π ih̄)(f−1)/2

∣∣∣∣det
∂2S(q ′′, q ′;E)

∂q ′′∂q ′

∣∣∣∣1/2 exp[iS(q ′′, q ′;E)/h̄− iµπ/2]

(2.1)

whereq ′ andq ′′ denotef − 1 generalized coordinates for two points located on the PSS.
The summation is over all classical trajectories which go fromq ′ to q ′′, crossing the PSS at
these points in the same sense and at no other points (in the same sense) in going fromq ′ to
q ′′. For each such trajectory one needs the action at energyE, denoted byS(q ′′, q ′;E), and
the phase indexµ, which is related to the occurrence of caustics—points on the trajectory
at which the semiclassical approximation is not valid. The matrix of second derivatives of
the action has dimensionf − 1.

If T (E) is the transfer operator andI is the unit operator, the corresponding semiclassical
energy eigenvalues of the quantum system are determined from the condition [4]

det[I − T (E)] = 0. (2.2)

When properly formulated, theT -operator is unitary [4]. In the past few years there have
been several applications of the transfer operator based on constructing an approximation to
T (E) in coordinate space [14–24]. However, when the system being treated has rotational
symmetry, it is better to treat the transfer operator in the angular momentum representation,
since it is then diagonal [17, 20]. In the next section we show how this may be carried out
for two-dimensional systems with circular symmetry.
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3. Two-dimensional systems with circular symmetry

Let us consider a particle of unit mass moving in two dimensions in a potentialV (r). The
Hamiltonian is

H = p2
r

2
+ p2

φ

2r2
+ V (r) (3.1)

wherepr = ṙ and pφ = r2φ̇ are the momenta conjugate to the polar coordinatesr and
φ describing the particle’s position. Since the angular momentumpφ is a constant of the
motion, let us denote it asL. For givenE andL, the turning points of the classical motion
along the radial direction are determined by

L2

2r2
+ V (r) = E. (3.2)

Clearly, the turning point radii,r− andr+, depend onL as well asE.
In setting up the transfer operator, we choose the PSS to be a circle of radiusR. While

in principle any radius betweenr− andr+ could be used, there is a natural choice for given
energyE. At that energy there is a trajectory with maximal angular momentumLmax(E)

which is a circle, corresponding to the radial kinetic energy being zero. We defineR to be
the radius of this circle. It can also be thought of as the circle for which the radial turning
points coincide. Then, trajectories at energyE having|L| < |Lmax(E)| have nonzero radial
kinetic energy, and, therefore, must repeatedly cross this circle, making it a suitable choice
for the PSS. (It is easy to show from equation (3.2) and the derivative of this equation that
R is the solution of 2V (r)+ rV ′(r) = 2E.)

The coordinateq on the PSS will be taken to be the polar coordinateφ. From
equation (2.1) the transfer operator fromφ to φ′ (where 06 φ 6 2π and 06 φ′ 6 2π ) on
the PSS is

T (φ′, φ;E) =
∑
j

1

(2π ih̄)1/2

∣∣∣∣∂2Sj (φ
′, φ;E)

∂φ′∂φ

∣∣∣∣1/2 exp[iSj (φ
′, φ;E)/h̄− iµjπ/2] (3.3)

wherej labels different possible classical trajectories at energyE which go fromφ to φ′

without crossing the PSS (in the same sense) at any other point. Let us define the angleγ

to beγ = φ′ −φ (modulo 2π ) in order that 06 γ 6 2π . The trajectories can be labelled in
such a way that the angle traversed by the particle in going fromφ to φ′ is ξ (j) = γ +2πj ,
where 06 γ 6 2π and j is an integer (positive, negative or zero). The action along the
j th trajectory can be written asS(ξ (j);E). Also, we can write

∂2S(ξ (j);E)
∂φ∂φ′

= −∂
2S(ξ (j);E)
∂γ 2

. (3.4)

Thus, in accord with the invariance of the Hamiltonian under rotations about the origin, the
transfer operator can be expressed in terms of the relative angleγ only. We can, therefore,
expand (3.3) in a Fourier series:

T (φ′, φ;E) = T (γ ;E) =
∞∑

m=−∞
Cm(E) exp(imγ ) (3.5)

where the expansion coefficients are

Cm(E) = 1

2π

∫ 2π

0
T (γ ;E) exp(−imγ ) dγ. (3.6)
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We now construct a matrix representation of the transfer operator using the basis
{(2π)−1/2 exp(imφ)}. Sinceγ = φ′ − φ (modulo 2π ), a typical matrix element is

Tm1m2(E) =
1

2π

∫ 2π

0
dφ

∫ 2π

0
dφ′ exp(−im1φ

′)T (γ ;E) exp(im2φ) = 2πCm1(E)δm1m2.

(3.7)

Thus, theT -matrix is diagonal in this representation, and its eigenvalues (as a function of
E) are just the diagonal elements. (Note that theseT -matrix eigenvalues should not be
confused with the semiclassical energy eigenvalues.) Denoting themth eigenvalue curve as
λm(E), we obtain from equations (3.3)–(3.7),

λm(E) =
∫ 2π

0
T (γ ;E) exp(−imγ ) dγ = 1

(2π ih̄)1/2
∑
j

exp(−iµjπ/2)

×
∫ 2π

0
dγ

∣∣∣∣∂2S(ξ (j);E)
∂γ 2

∣∣∣∣1/2 exp[iS(ξ (j);E)/h̄− imγ ]. (3.8)

We remind the reader thatξ (j) depends onγ through the definitionξ (j) = γ + 2πj .
Up to this point we have made no approximations other than the approximation involved

in deriving Bogomolny’s semiclassical transfer operator. We now evaluate the integrals in
(3.8) using the stationary phase approximation. For thej th integral the point at which the
phase is stationary is determined by the equation

∂S(ξ (j);E)
∂γ

= mh̄. (3.9)

The left-hand side of this relation is the classical angular momentumL for thej th trajectory.
Thus, the stationary phase condition effectively quantizes the angular momentum of the
particle. Because the possible trajectories fromφ to φ′ at energyE are uniquely specified by
the angular momentum, it is clear that for each value ofm (positive, negative or zero) there
is at most one trajectorysatisfying (3.9). (A solution exists if and only if|L| 6 |Lmax(E)|.)
The value ofj for this trajectory will be denotedjm. Thus, for givenm, we denote the
solution of equation (3.9) (when it exists) asγm, and the corresponding angle traversed by
the particle in going fromφ to φ′ asξm = γm + 2πjm.

When a solutionγm of equation (3.9) exists for a particular value ofjm, we can evaluate
the integral in the usual way, assuming that∂2S/∂γ 2 is a relatively slowly varying function
of γ . Introducing the symbolνm through the definition

νm = 0 if

(
∂2S

∂γ 2

)
γ=γm

> 0

νm = 1 if

(
∂2S

∂γ 2

)
γ=γm

< 0

(3.10)

and henceforth denotingµj for the trajectoryjm asµm, we obtain

λm(E) ≈ exp[iS(ξm;E)/h̄− imγm − i(µm + νm)π/2]. (3.11)

The fact that these approximate eigenvalues of theT -matrix have unit modulus is consistent
with the T -matrix being unitary [4]. Note that the symbolsµm and νm have the same
meaning as in the paper by Creaghet al [25].

It is useful to further simplify this expression by splitting the action for the trajectory
jm into radial and angular parts. The angular part, evaluated atγm, may be denoted by

Sang(ξm;E) =
∫
pφ dφ = mh̄(γm + 2πjm) (3.12)
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and the radial part, evaluated at the angular momentumL = mh̄ determined by the stationary
phase condition, is

Srad(L = mh̄;E) =
∮
|pr ||dr| = 2

∫ r+

r−
|pr |dr. (3.13)

Using the fact that exp(im2πjm) = 1, we arrive at the expression

λm(E) ≈ exp[iSrad(L = mh̄;E)/h̄− i(µm + νm)π/2]. (3.14)

The semiclassical energy eigenvalues of the quantum system are found from the
determinantal equation (2.2), which is satisfied whenever an eigenvalue of theT -matrix
is equal to unity. Thus, the condition for an energy eigenvalue is thatλm(E) = exp(i2πnr).
From equation (3.14) this yields

Srad(L = mh̄;E) = 2πh̄(nr + σm/4) nr = 0, 1, 2, . . . (3.15)

where we define the Maslov indexσm = µm+ νm. This is associated with a complete cycle
of the radial motion for a trajectory at energyE and angular momentumL = mh̄. The
allowed values ofnr in (3.15) are determined by the assumption thatSrad> 0.

In appendix A it is shown that, for smooth potentials, the combinationσm = µm + νm
is always equal to 2. This is the result one would obtain for the Maslov index in EBK
quantization [11, 12] using the simple rule of counting 1 for each of the soft turnarounds
during a complete cycle of the radial motion. It is also shown in appendix A that if the
particle is confined inside a circular disk with a hard wall (Dirichlet boundary condition on
the wavefunction), the result forσm is 3. This agrees with the simple rule for computing the
EBK Maslov index by counting 1 for the soft turnaround at the inner radial turning point
and 2 for the collision with the disk boundary. Thus, for systems having circular symmetry
in two dimensions, Bogomolny’s transfer operator (modified using the stationary phase
approximation) leads to EBK quantization, with the Maslov index for the radial motion
computed by the well known simple rules. Note thatσm is a canonical invariant, even
though the transfer operator is not canonically invariant (since it depends on the choice
of the PSS). In addition to (3.15), the other EBK quantization condition,L = mh̄, was,
of course, obtained from the stationary phase condition (3.9). It is worth noting that for
systems that are invariant under time reversal, the energy eigenvalues withm 6= 0 are doubly
degenerate.

4. Application to systems in two dimensions

4.1. The Coulomb plus1/r2 potential

Let us now apply this general formulation to the hydrogen atom in two dimensions. In fact
we shall treat a slightly more complicated potential, namely the Coulomb potential plus a
term proportional to 1/r2. For the pure Coulomb potential, there is a one-parameter family
of ellipses which start out from a given point on the PSS and return to the same point. Thus,
this point is a focal point. By adding the 1/r2 term, we ensure that the trajectories are not
ellipses, and thereby avoid difficulties associated with the initial point being a conjugate
point.

Assuming that the nucleus is stationary at the origin, we take the potential to be

V (r) = −1

r
± α2

2r2
. (4.1)

For convenience we have taken the electronic chargee to be unity, and we have written the
strength of the 1/r2 potential asα2/2, whereα has the dimensions of angular momentum.
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The 1/r2 potential may be repulsive or attractive, and providedα2 is not too large in the
repulsive case, the electron will always be bound to the nucleus, implying that the energy
E is negative. From equation (3.2), the classical turning points of the radial motion occur
at radii r− andr+ given by

r± = 1± β
2|E| (4.2)

β = [1− 2|E|(L2± α2)]1/2. (4.3)

The radius of the Poincaré circle defined in the previous section isR = 1/(2|E|) (although
we shall not make explicit use of this in what follows). For the repulsive 1/r2 potential, each
trajectory traverses an angle less than 2π before returning to the PSS, while in the attractive
case, the trajectories go through angles greater than 2π . This means that the possible
trajectories are qualitatively different in the two cases, there being only two possibilities in
the former case and many in the latter case. Note from (4.3) that, for givenE, the maximum
possible value of the classical angular momentum is given by

[Lmax(E)]
2 = 1

2|E| ∓ α
2. (4.4)

To obtain the semiclassical energy eigenvalues from equation (3.15), we must calculate
the radial action integral withL = mh̄, as in (3.13). Using equation (3.1) withL = mh̄ to
solve for |pr | as a function ofr, we obtain

Srad(L = mh̄;E) = 2
∫ r+

r−
|pr | dr = π

(
2

|E|
)1/2

− 2π(m2h̄2± α2)1/2. (4.5)

Here the first term on the right-hand side is the action of each member of the family
of elliptical orbits at energyE of the pure Coulomb potential. To write down the EBK
quantization condition from equation (3.15), we setσm = 2, corresponding to two soft
turnarounds at the radial turning points (see appendix A). Hence,

π

h̄

(
2

|E|
)1/2

− 2π(m2± α2/h̄2)1/2 = (2nr + 1)π nr = 0, 1, 2, . . . . (4.6)

Using the fact thatE is negative for the bound state solutions we are considering, we obtain

Emnr = −
1

2h̄2[nr + 1
2 + (m2± α2/h̄2)1/2]2

m = 0,±1,±2, . . . nr = 0, 1, 2, . . . .

(4.7)

This expression gives the approximate semiclassical energy eigenvalues for the Coulomb
plus 1/r2 potential. Note that the energy is the same for positive and negative values ofm,
implying that the energy eigenvalues are doubly degenerate form 6= 0 and nondegenerate
for m = 0. The allowed values ofm are constrained by the condition|m|h̄ 6 |Lmax(E)|,
with |Lmax(E)| given by equation (4.4).

The pure Coulomb potential is obtained by lettingα→ 0 in equation (4.7). Until now
we have assumed thatα is nonzero and sufficiently large (presumably,α � h̄) that the
trajectories are not close to being ellipses, thereby avoiding the pointφ′ on the PSS being
a focal point. At this stage, however, it is permissible to relax this requirement and letα

become zero. Puttingn = |m| + nr , we obtain

En = − 1

2h̄2(n+ 1
2)

2
n = 0, 1, 2, . . . . (4.8)
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(It is satisfying that the limit does not depend on the sign of theα2/(2r2) term in the
potential, despite the fact that the two problems are quite different, as mentioned earlier.)
This expression for the energy eigenvalues is exactly the same as the result found by solving
the two-dimensional Schrödinger equation for the Coulomb potential. The eigenvalues do
not depend explicitly onm, but it is clear from the definition ofn that |m| 6 n. This
condition, which also arises, for example, in solving the radial Schrödinger equation by
the method of series expansion, or by using group-theoretical considerations, correctly
determines the degeneracies of the energy levels given by (4.8).

In an earlier study of the hydrogen atom in two dimensions using Bogomolny’s transfer
operator [23], the PSS was chosen to be a radial line. The ‘half-mapping’ transfer operators
introduced by Haggerty [19] were used to avoid the problem associated with the family of
trajectories (ellipses) at energyE starting from a point on the PSS and returning to the same
point on the PSS. The outcome of this work was similar to equation (4.8) but with(n+ 1

2)
2

replaced by(n + 3
4)

2. We now realize that this peculiar result was due to an incorrect
assignment of the phase indices associated with the elliptical trajectories. In figure 2 of
[23], there is a caustic associated with the longer solid trajectory, but there isno caustic
associated with the shorter solid trajectory. When this fact is properly taken into account,
the energy levels turn out to be the same as equation (4.8). Thus, the energy levels of this
system do not depend on the choice of the PSS, at least for the two choices considered.

4.2. The circular harmonic oscillator plus1/r2 potential

A particle moving in two dimensions in a circular harmonic oscillator plus 1/r2 potential has
been treated in an earlier paper [24] using a slightly different method based on Bogomolny’s
transfer operator. Here we show that our general formulation of section 3 leads quickly to
the same results for the energy eigenvalues of this system.

We take the potential to be

V (r) = 1
2ω

2r2± α2

2r2
(4.9)

where, as in the last section,α2/2 is the strength of the 1/r2 potential, which may be
attractive or repulsive. When the particle has energyE, equation (3.2) leads to the following
expression for the classical turning-point radii:

r2
± =

E ± [E2− ω2(L2± α2)]1/2

ω2
. (4.10)

Using this, and solving equation (3.1) to find|pr | as a function ofr, one finds,

Srad(L;E) = 2
∫ r+

r−
|pr | dr = πE

ω
− π(L2± α2)1/2. (4.11)

When this is substituted in equation (3.15), withL set equal tomh̄ and σm set equal to
2 (corresponding to soft turnarounds atr− and r+), we obtain for the energy eigenvalues
belonging to a given value ofm

Emnr = h̄ω[2nr + (m2± α2/h̄2)1/2+ 1]

m = 0,±1,±2, . . . nr = 0, 1, 2 . . . .
(4.12)

This expression agrees with the result obtained from an exact solution of the Schrödinger
equation (see, for example, Flügge [26]). A plausible explanation of this agreement, despite
the approximations inherent in our semiclassical approach, has been put forward earlier
[24] and will be briefly discussed in the final section of the paper. Note that the energy
eigenvalues are doubly degenerate whenm 6= 0 and nondegenerate whenm = 0.
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4.3. Circular harmonic oscillator plus singular magnetic flux line

The development in the last section can be extended to include a singular magnetic flux line
passing through the origin. This means that, in addition to the circular harmonic oscillator
potential and the 1/r2 potential, the particle motion occurs in the presence of a magnetic field
(perpendicular to the plane of the motion) having the form of aδ-function singularity at the
origin. The magnetic field breaks the time-reversal symmetry and removes the degeneracy
of the energy eigenvalues whenm 6= 0.

It is convenient to paramatrize the strength of the flux line by the positive quantity
δ = e8/(hc), wheree is the magnitude of the charge on the particle and8 is the total
magnetic flux through the singular point. In the presence of the flux line the Hamiltonian
is (see Bracket al [27])

H = p2
r

2
+ (pφ − δ)

2

2r2
+ V (r) (4.13)

wherepφ , the momentum canonical to the coordinateφ, is a constant of the motion, and
V (r) is given by equation (4.9). Then, for the trajectory labelled byj in equation (3.8), the
angular part of the action is

Sang(ξ
(j);E) = pφξ (j) = pφ(γ + 2πj). (4.14)

Thus, the stationary phase condition (3.9) becomespφ = mh̄. However, by comparing
(4.13) with equation (3.1) we see that(pφ − δ)2 now plays the role thatL2 played in
section 3. For givenm the quantization condition (3.15) becomes

Srad(L = |mh̄− δ|;E) = 2πh̄(nr + σm/4) nr = 0, 1, 2, . . . . (4.15)

Making this replacement in (4.11) and settingσm = 2 (corresponding to soft turnarounds at
r− andr+), we obtain the following expression for the energy eigenvalues:

Emnr = h̄ω{2nr + [(m− δ/h̄)2± α2/h̄2]1/2+ 1}
m = 0,±1,±2, . . . nr = 0, 1, 2, . . . .

(4.16)

For the case of a singular flux line at the centre of a circular harmonic oscillator potential,
we can letα→ 0 in (4.16). The resulting energy eigenvalues are

Emnr = h̄ω(2nr + |m− δ/h̄| + 1)

m = 0,±1,±2, . . . nr = 0, 1, 2, . . .
(4.17)

which clearly are different for positive and negative values ofm. This result is the same
as the exact analytical solution of the Schrödinger equation for this problem, which can be
obtained from the exact harmonic oscillator solution by replacing|m|h̄ by |mh̄−δ| wherever
it occurs [27].

4.4. The circle billiard

In this section we apply the general formulation based on the transfer operator to a particle
moving in a constant potential (which we take to be zero) inside a circle of radiusR. We
show that this leads to well known results for the EBK energy eigenvalues.

At energyE and angular momentumL, the radial motion has an inner turning point at
the radiusr− given by |L| = r−(2E)1/2. Choosing the radius of the Poincaré circle to be
R (or just slightly less thanR so that the PSS is crossed just after the particle has made a
collision with the boundary) ensures that all trajectories cross the PSS.
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At fixed values ofE andL, the radial part of the action integral is

Srad(L;E) = 2
∫ R

r−
|pr | dr = 2

∫ R

r−
(2E − L2/r2)1/2 dr

= 2(2ER2− L2)1/2− 2|L| cos−1[|L|/(2E)1/2R]. (4.18)

Writing E = h̄2k2/2 and settingL = mh̄, with the values ofm restricted by the condition
|m|h̄ 6 |Lmax(E)| = (2E)1/2R, we obtain from equation (3.15) the following condition for
an approximate energy eigenvalue of the quantum system:

(k2R2−m2)1/2− |m| cos−1[|m|/(kR)] = π(nr + 3
4)

m = 0,±1,±2, . . . nr = 0, 1, 2, . . . .
(4.19)

Here we have putσm = 3, corresponding to a soft turnaround at the inner turning point
and a hard-wall collision at the circle boundary. (See the discussion in appendix A.)
Equation (4.19) can be solved numerically to determine the EBK energy eigenvalues. (This
is equivalent to finding the zeros of the Bessel functionJm(kR) when it is approximated
by the leading term of the Debye asymptotic expansion. See [3, p 336].) Results for the
lowest energy eigenvalues have been tabulated by Keller and Rubinow [12] and by Brack
and Bhaduri (see [3, p 88]). The fractional difference between the EBK eigenvalues and the
exact energy eigenvalues (determined from the zeros of the Bessel functionJm(kR)) was
found to decrease fairly rapidly with increasing energy.

4.5. The annulus billiard

The annulus billiard consists of a particle moving in a constant potential (which we take
to be zero) in the region between two concentric circles of radiiR and a. (We assume
R > a.) In this section we show how equation (3.15) may be used to obtain the EBK
energy eigenvalues for this system.

As in the case of the circle billiard, we choose the Poincaré circle to have radiusR. At
energyE and angular momentumL the radial motion may have an inner turning point at the
radiusr− given by |L| = r−(2E)1/2. Provideda < r−, the minimum value ofr during the
radial motion will ber−. However, ifa > r−, the radial motion is reversed by a hard-wall
collision at r = a. In the former case with a soft turnaround atr−, the Maslov index is
σm = 3, as for the circle billiard. In the latter case, there are two hard-wall collisions, and
the Maslov index isσm = 4.

The radial part of the action involves the same integral as in equation (4.18), but
is now evaluated at the limitsrmin and R, where rmin is r− or a, whichever is larger.
PuttingE = h̄2k2/2 and settingL = mh̄, with the values ofm restricted by the condition
|m|h̄ 6 |Lmax(E)| = (2E)1/2R, we obtain the following condition for an approximate energy
eigenvalue of the quantum system, similar to equation (4.19):

(k2r2−m2)1/2|Rrmin
− |m| cos−1[|m|/(kr)]|Rrmin

= π(nr + σm/4)
m = 0,±1,±2, . . . nr = 0, 1, 2, . . . .

(4.20)

Here, σm = 3 if rmin = r−, and σm = 4 if rmin = a. The solution of this equation
gives the EBK energy eigenvalueEmnr . Numerical values for the lowest 30 distinct EBK
energy eigenvalues are tabulated in [29] for three cases:a = 0.1R, a = 0.3R, and
a = 0.5R. Also tabulated in [29] are the energy eigenvalues computed from Bogomolny’s
transfer operator without making use of the stationary phase approximation or any other
approximation. The results differ appreciably from the EBK energy eigenvalues. This draws
attention to the fact that the stationary phase approximation used to derive equation (3.15)
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constitutes an approximationin addition to the main semiclassical approximation contained
in Bogomolny’s transfer operator. It is clear that Bogomolny’s approach and EBK
quantization are generally equivalent only to leading order in ¯h.

5. Three-dimensional systems with spherical symmetry

A theory of the transfer operator for three-dimensional systems with spherical symmetry is
only slightly more complicated than in two dimensions. For a particle of unit mass moving
in a potentialV (r), the Hamiltonian is

H = p2
r

2
+ p2

θ

2r2
+ p2

φ

2r2 sin2 θ
+ V (r) (5.1)

wherepr = ṙ, pθ = r2θ̇ andpφ = r2 sin2 θφ̇ are the momenta conjugate to the spherical
polar coordinates(r, θ, φ) describing the particle’s position. Because the component of the
angular momentum about the polar axis,pφ , is a constant of the motion, let us denote it
asLz. In addition, the square of the total angular momentum,L2 = p2

θ + L2
z/ sin2 θ , is a

constant of the motion. Therefore, the Hamiltonian may be written as

H = p2
r

2
+ L2

2r2
+ V (r). (5.2)

For givenE andL, the turning points of the radial motion are determined by

L2

2r2
+ V (r) = E. (5.3)

Thus, as in two dimensions, the turning point radii,r− andr+, depend onL2 as well asE.
In constructing the transfer operator, we choose the PSS to be a sphere of radiusR. The

argument following equation (3.2) applies equally well to the three-dimensional situation.
Therefore, we chooseR to be equal to the radius of the circular trajectory at energyE

for which the angular momentum has its maximum possible value. Then, for any angular
momentum|L| 6 Lmax(E), the trajectories of the system will repeatedly cross this surface.

The generalized coordinatesq for the transfer operator are the polar angles(θ, φ) on
the Poincaŕe sphere, which we denote collectively as�. Then, from equation (2.1) with
f = 3, the transfer operator from� to �′ is

T (�′, �;E) =
∑
cl.tr.

1

2π ih̄

∣∣∣∣det
∂2S

∂�∂�′

∣∣∣∣1/2 exp[iS(�′, �;E)/h̄− iµπ/2]. (5.4)

Here the sum is over all possible classical trajectories at energyE which go from� to
�′ without crossing the PSS (in the same sense) at any other point. Letγ be the angle
subtended at the origin by these points, with 06 γ 6 π . All possible trajectories from�
to�′ lie in the plane defined by these points and the origin, and each such trajectory can be
uniquely identified by the total angle traversed as the particle moves along the trajectory.
The trajectories fall into two classes, which we treat separately. In the first class, the angles
traversed areξ (j)+ = 2πj+γ , j = 0, 1, 2, . . . , while in the second class, the angles traversed
areξ (j)− = 2πj − γ , j = 1, 2, . . . . The sum in (5.4) is over the trajectories of both classes.

The determinant of the second derivatives ofS(ξ
(j)
± ;E) is evaluated in appendix B,

where it is found that∣∣∣∣det
∂2S

∂�∂�′

∣∣∣∣ = 1

sinγ

∣∣∣∣ ∂S∂γ
∣∣∣∣ ∣∣∣∣ ∂2S

∂γ 2

∣∣∣∣ . (5.5)
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Substituting in equation (5.4), we obtain

T (�′, �;E) =
∑
cl.tr.

1

2π ih̄

1

(sinγ )1/2

∣∣∣∣ ∂S∂γ
∣∣∣∣1/2 ∣∣∣∣ ∂2S

∂γ 2

∣∣∣∣1/2 exp[iS(ξ (j)± ;E)/h̄− iµ(j)± π/2]. (5.6)

The spherical symmetry of the system implies thatT (�′, �;E) depends only on the
angleγ subtended at the origin by the points� and�′ on the Poincaŕe sphere. Therefore,
we can expand the transfer operator in a Legendre series:

T (�′, �;E) = T (γ ;E) =
∞∑
l=0

Cl(E)Pl(cosγ ) (5.7)

where the expansion coefficients are

Cl(E) = 2l + 1

2

∫ π

0
T (γ ;E)Pl(cosγ ) sinγ dγ. (5.8)

The spherical harmonic addition theorem

Pl(cosγ ) = 4π

2l + 1

l∑
m=−l

Ylm(�)Y
∗
lm(�

′) (5.9)

allows us to write

T (�′, �;E) = T (γ ;E) =
∞∑
l=0

Cl(E)
4π

2l + 1

l∑
m=−l

Ylm(�)Y
∗
lm(�

′) (5.10)

whereYlm(�) is a spherical harmonic function. We can now calculate matrix elements of
the T -operator in the angular momentum representation. From the orthonormality of the
spherical harmonics, a general matrix element is found to be

Tl1m1,l2m2(E) =
∫

d�
∫

d�′Y ∗l1m1
(�)T (�′, �;E)Yl2m2(�

′)

=
(

4π

2l1+ 1

)
Cl1(E)δl1l2δm1m2. (5.11)

Thus, theT -matrix is diagonal in this representation, and its eigenvalues (as a function of
E) are just the diagonal elements. Denoting thelm-eigenvalue curve, which is(2l+1)-fold
degenerate, asλlm(E), we obtain from equations (5.6), (5.8) and (5.11),

λlm(E) = 1

ih̄

∑
cl.tr.

∫ π

0
dγ

∣∣∣∣ ∂S∂γ
∣∣∣∣1/2 ∣∣∣∣ ∂2S

∂γ 2

∣∣∣∣1/2 exp[iS(ξ (j)± ;E)/h̄− iµ(j)± π/2]

×Pl(cosγ )(sinγ )1/2. (5.12)

So far we have made no approximations beyond those used to derive Bogomolny’s
semiclassical transfer operator. For a given system, one can calculate the actionS(ξ

(j)
± ;E)

for each possible trajectory, as well as the derivatives with respect toγ , and hence evaluate
the integrals. However, to proceed in a manner analogous to our treatment of two-
dimensional systems, we make use of the following asymptotic expansion forPl(cosγ ),
valid for large values ofl (see [28, equations 8.10.7 and 6.1.46]):

Pl(cosγ ) ≈ 1

(l + 1
2)

1/2

(
1

2π sinγ

)1/2

{exp[i(l + 1
2)γ − iπ/4]+ exp[−i(l + 1

2)γ + iπ/4]}

(5.13)
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where terms of higher order in 1/l have been neglected. The same approximation has been
used in the problem of scattering of waves by a sphere to show how the limit of geometrical
optics can be obtained from physical optics [30]. After inserting (5.13) in equation (5.12),
we can evaluate the resulting integrals using the stationary phase approximation.

The two terms in (5.13) yield the stationary phase conditions

∂S(ξ
(j)
± ;E)
∂γ

± (l + 1
2)h̄ = 0 (5.14)

where the± between the terms refers to the two terms in the asymptotic expansion (5.13).
At this point we find it convenient to treat separately the trajectories that traverse angles
ξ
(j)
+ = 2πj+γ , j = 0, 1, 2, . . . and those that traverse anglesξ (j)− = 2πj−γ , j = 1, 2, . . . ,

where in both cases 06 γ 6 π . We shall show that both classes of trajectory lead to the
same stationary phase condition, but that for a given value ofl, the corresponding trajectory
is either in one class or the other.

Let us suppose for the moment that the trajectory under consideration belongs to
the first class. Because the action increases with the traversed angleξ

(j)
+ , we have

∂S/∂γ = ∂S/∂ξ (j)+ > 0. Then equation (5.14) can be satisfied by taking the second term in
(5.13). Since∂S/∂γ is the magnitude of the total angular momentum, the stationary phase
condition (5.14) effectively quantizes the total angular momentum:

L = |L | = (l + 1
2)h̄ l = 0, 1, 2, . . . . (5.15)

Furthermore, specifying the total angular momentum (withL 6 Lmax(E); see below
equation (5.3)) completely determines the trajectory at energyE in the plane containing
�, �′ and the origin. Thus, for a given value ofl in (5.15), there isat most one trajectory,
labelled byjl > 0, which contributes to the sum in equation (5.12). For this trajectory
(which, by assumption, belongs to the first class), we denote the angle traversed by the
particle asξl = γl + 2πjl , whereγl (in the range between 0 andπ ) is the stationary point
determined by equation (5.14). We also denote the corresponding action bySl and the phase
index byµl . When slowly varying quantities are taken outside the integral (to be evaluated
at γ = γl), theT -matrix eigenvalue curve (5.12) becomes

λlm(E) = 1

(2π)1/2ih̄

1

(l + 1
2)

1/2

∣∣∣∣ ∂S∂γ
∣∣∣∣1/2
γ=γl

∣∣∣∣ ∂2S

∂γ 2

∣∣∣∣1/2
γ=γl

×
∫ π

0
dγ exp[iSl(γ ;E)/h̄− i(l + 1

2)γ − iµlπ/2+ iπ/4]. (5.16)

The integral is now evaluated in the usual way. Introducing the phase indexνl as in
equation (3.10), we obtain

λlm(E) ≈ exp[iSl(ξl;E)/h̄− i(l + 1
2)γl − i(µl + νl)π/2]. (5.17)

As in the two-dimensional case, these approximateT -matrix eigenvalue curves have unit
modulus, consistent with theT -matrix being unitary.

We now split the actionS(ξl;E) into radial and angular parts. From the stationary phase
condition, equation (5.14), the magnitude of the angular momentum along the trajectory is
(l + 1

2)h̄. Thus, since the particle traverses the angleξl = γl + 2πjl when it moves along
this trajectory, we obtain for the angular part of the action

Sang(ξl;E)/h̄ = (l + 1
2)(γl + 2πjl). (5.18)
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The radial part of the action, evaluated forL2 = (l + 1
2)

2h̄2, is denoted as

Srad(L
2 = (l + 1

2)
2h̄2;E) =

∮
|pr ||dr| = 2

∫ r+

r−
|pr | dr. (5.19)

Hence, equation (5.17) becomes

λlm(E) ≈ exp[iSrad(L
2 = (l + 1

2)
2h̄2;E)/h̄− i(µl + νl − 2jl)π/2]. (5.20)

Next we suppose that the trajectory corresponding to a given value ofl belongs to the
second class, in which case the angle traversed by the particle has the formξ

(j)
− = 2πj −γ ,

j = 1, 2, . . . . Here too the action must increase with the traversed angleξ
(j)
− , implying

that ∂S/∂γ = −∂S/∂ξ (j)− < 0. Then the stationary phase condition, equation (5.14), can
be satisfied by taking the first term in the asymptotic expansion (5.13). One obtains in
this case the same condition, equation (5.15), for the magnitude of the angular momentum.
However, theT -matrix eigenvalue curve corresponding to equation (5.17) becomes in this
case

λlm(E) ≈ exp[iSl(ξl;E)/h̄+ i(l + 1
2)γl − i(µl + νl + 1)π/2] (5.21)

whereξl = 2πjl − γl andjl > 1. The angular part of the action in this case is

Sang(ξl;E)/h̄ = (l + 1
2)(2πjl − γl) (5.22)

which yields theT -matrix eigenvalue curve

λlm(E) ≈ exp[iSrad(L
2 = (l + 1

2)
2h̄2;E)/h̄− i(µl + νl − 2jl + 1)π/2]. (5.23)

The semiclassical energy eigenvalues of the quantum system are found from the
determinantal equation (2.2), which is satisfied whenever an eigenvalue of theT -matrix is
equal to unity. Thus, the condition for an energy eigenvalue is thatλlm(E) = exp(i2πnr).
From equations (5.20) and (5.23) this yields the following condition for an energy
eigenvalue:

Srad(L
2 = (l + 1

2)
2h̄2;E) = 2πh̄(nr + σl/4) nr = 0, 1, 2, . . . (5.24)

where the Maslov indexσl associated with a complete cycle of the radial motion at energy
E andL2 = (l + 1/2)2h̄2 is defined to be

σl = µl + νl − 2jl for trajectories in classξl = 2πjl + γl jl = 0, 1, . . .

σl = µl + νl − 2jl + 1 for trajectories in classξl = 2πjl − γl jl = 1, 2, . . . .
(5.25)

As in the two-dimensional case, the values ofnr in (5.24) are determined by the assumption
that Srad> 0.

It is shown in appendix A that this definition always leads to the resultσl = 2 for
soft potentials, and toσl = 3 for a particle inside a spherical cavity, making a hard-wall
collision with the boundary in each cycle of the radial motion. These results are consistent
with computingσl by the simple EBK rules of counting 1 for each soft turnaround of the
radial motion and 2 for each hard-wall collision. Thus, equations (5.24) and (5.25) give
the EBK quantization condition for the radial part of the action in three dimensions. The
other EBK quantization conditions areL2 = (l + 1

2)
2h̄2 andLz = mh̄ with −l 6 m 6 l.

The first of these was obtained earlier from the stationary phase condition. The second is a
natural interpretation of the quantum numberm introduced through the expansion of theT -
operator in spherical harmonics. Because of the spherical symmetry, the energy eigenvalues
corresponding to a particular value ofl are(2l + 1)-fold degenerate.
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6. Application to systems with spherical symmetry

6.1. The Coulomb plus1/r2 potential in three dimensions

As in the two-dimensional case, the pure Coulomb potential has the special property that
all classical trajectories (ellipses) starting from a given point on the PSS will return to the
same point, which is, therefore, a focal point. To avoid this singular behaviour we shall
again add a small 1/r2 term to the potential, which may be attractive or repulsive. Thus,
we take the Hamiltonian corresponding to equation (5.2) to be

H = p2
r

2
− 1

r
+ L

2± α2

2r2
(6.1)

where, as in the two-dimensional case,α2/2 is the strength of the 1/r2 potential. The
turning-point radii, determined from equation (5.3), are given by equations (4.2) and (4.3)
with L2 being the square of the angular momentum of the particle. As in the two-dimensional
case, we choose the radius of the Poincaré sphere to beR = 1/(2|E|).

The calculation of the radial contribution to the action proceeds exactly as in two
dimensions. The result, similar to equation (4.5), is

Srad(L
2 = (l + 1

2)
2h̄2;E) = π

(
2

|E|
)1/2

− 2π [(l + 1
2)

2h̄2± α2]1/2. (6.2)

Setting the Maslov indexσl equal to 2, corresponding to two soft turnarounds in the radial
motion (see appendix A), we obtain from equation (5.24) the following condition for an
energy eigenvalue for givenl andm:

π

(
2

|E|
)1/2

− 2π [(l + 1
2)

2h̄2± α2]1/2 = 2πh̄(nr + 1
2) nr = 0, 1, 2, . . . . (6.3)

SinceE is negative for the bound-state solutions we are considering, the energy eigenvalues
for given l andm (−l 6 m 6 l) are found to be

Elmnr = −
1

2h̄2{nr + 1
2 + [(l + 1

2)
2± α2/h̄2]1/2}2 nr = 0, 1, 2, . . . . (6.4)

This expression gives the approximate semiclassical energy eigenvalues for the Coulomb
plus 1/r2 potential. As expected, they are(2l+1)-fold degenerate because of the spherical
symmetry of the system. It should also be observed that the allowed values ofl are
constrained by the condition that(l + 1

2)h̄ 6 Lmax(E), with [Lmax(E)]2 = 1/(2|E|) ∓ α2,
as in the two-dimensional case.

The result for the pure Coulomb potential is found by lettingα→ 0 in equation (6.4).
Puttingn = l + nr + 1 we obtain,

En = − 1

2h̄2n2
n = 1, 2, . . . (6.5)

independent of the sign of theα2 term, as in two dimensions. This is the same as the
familiar result found by solving the three-dimensional Schrödinger equation for the Coulomb
potential. It is clear from the definition ofn that l < n. This condition, which also arises
in solving the Schr̈odinger equation, leads to the degeneracy of thenth energy level being
n2.

It is remarkable that we have obtained the same result as the exact energy levels
of the hydrogen atom, despite having made three approximations: (i) the semiclassical
approximation embodied in Bogomolny’s transfer operator; (ii) the asymptotic expansion
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(5.13) for Pl(cosγ ); and (iii) the evaluation of the integral in (5.12) using the stationary
phase approximation. A plausible explanation for this agreement will be given in the
discussion at the end of the paper.

6.2. The spherical harmonic oscillator plus1/r2 potential

In this section we treat the isotropic harmonic oscillator plus a small 1/r2 potential. We
take the Hamiltonian corresponding to equation (5.2) to be

H = p2
r

2
+ 1

2
ω2r2+ L

2± α2

2r2
(6.6)

where, as in the two-dimensional case,ω2 describes the steepness of the harmonic oscillator
potential, andα2/2 is the strength of the 1/r2 potential, which may be attractive or repulsive.
The radial turning points, determined from equation (5.3) for fixedE andL2, are given
by equation (4.10), as in two dimensions. WhenL2 has its maximum possible value,
determined by

[Lmax(E)]
2 = E2

ω2
∓ α2 (6.7)

the radial kinetic energy is zero and the particle trajectory is confined to the sphere of radius
R = E1/2/ω. We take the Poincaré sphere to have this radius since all trajectories having
L 6 Lmax(E) must repeatedly cross this surface.

For givenE and L2 the radial part of the action can be calculated as in the two-
dimensional case. The result is the same as equation (4.11). Furthermore, from the analysis
in appendix A, the Maslov index isσl = 2. Thus, from equation (5.24), the condition for
an energy eigenvalue is

πE

ω
− πh̄[(l + 1

2)
2± α2/h̄2]1/2 = 2πh̄(nr + 1

2) nr = 0, 1, 2 . . . . (6.8)

Hence, the energy eigenvalue specified byl, m andnr is

Elmnr = h̄ω{2nr + [(l + 1
2)

2± α2/h̄2]1/2+ 1} nr = 0, 1, 2, . . . . (6.9)

These eigenvalues are clearly(2l + 1)-fold degenerate. Note that the permissible values
of l are determined by the condition that(l + 1

2)h̄ 6 Lmax(E), with Lmax(E) given by
equation (6.7).

The energies of the pure isotropic harmonic oscillator in three dimensions are found by
letting α→ 0. Definingn = 2nr + l, we obtain (independent of the sign of theα2 term)

En = h̄ω(n+ 3
2) n = 0, 1, 2, . . . . (6.10)

The ground state energy is the zero-point energy associated with three freedoms. The
multiplicities of the levels are determined by the(2l+1)-fold degeneracy associated withm
and by the number of distinct ways of obtaining a given value ofn from the integer values
of l andnr . The energy levels given by (6.10) and their degeneracies are the same as those
obtained in the solution of the three-dimensional Schrödinger equation for the spherical
oscillator (see, for example, [26, pp 166–8]).

6.3. Billiard in a spherical cavity

A particle moving in zero potential inside a spherical cavity of radiusR is the three-
dimensional analogue of the circle billiard. As in the two-dimensional system, for given
values of the energyE and the square of the total angular momentumL2, the inner turning
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point radiusr− is given by|L| = (2E)1/2r−. We choose the PSS to be the sphere of radius
R (or just slightly less thanR, in order that the trajectories cross the PSS immediately after
colliding with the spherical boundary).

To obtain the EBK eigenvalues from equation (5.24) we can use equation (4.18) for
the radial part of the action integral, which is the same for the two- and three-dimensional
systems. Furthermore, it was shown in appendix A that the Maslov index isσl = 3 for this
system. Thus, from equations (5.24) and (4.18), the condition for an energy eigenvalue of
the billiard in a spherical cavity is

[k2R2− (l + 1
2)

2]1/2− (l + 1
2) cos−1[(l + 1

2)/(kR)] = π(nr + 3
4)

l = 0, 1, 2 . . . nr = 0, 1, 2, . . . .
(6.11)

Here the allowed values ofl at energyE are restricted by the condition(l + 1
2) 6 kR,

wherek = (2E)1/2/h̄. Equation (6.11) could be solved numerically in a manner similar
to equation (4.19) to obtain the EBK energy eigenvalues. (This would be equivalent to
finding approximate values for the zeros of the spherical Bessel functionjm(kR) when it is
approximated by the leading term of the Debye asymptotic expansion.)

7. Discussion

We have shown how, with the help of the stationary phase approximation, Bogomolny’s
transfer operator leads to the EBK quantization rules for the energy eigenvalues of integrable
systems having rotational symmetry, in both two and three dimensions. An important aspect
of the theory was showing that the Maslov indices are correctly given by the simple rules
of counting 1 for each soft turnaround and 2 for each hard-wall collision occurring during
one complete cycle of the radial motion.

In discussing the annulus billiard in section 4.5 we drew attention to the fact that the
EBK energy eigenvalues are appreciably different from those obtained using Bogomolny’s
transfer operator unmodified by making the stationary phase approximation or any other
approximation. It is noteworthy, however, that among the eight different rotationally
invariant systems to which the theory was applied, in five cases the EBK energy eigenvalues
turned out to be the same as those obtained from an exact solution of the Schrödinger
equation. While EBK quantization is known to be exact for certain special systems (such
as the Coulomb and harmonic oscillator potentials), we are not aware of a general theory
which explains why this happens. Bogomolny’s transfer operator, in its exact [31] and
semiclassical forms, may be helpful in this regard.

For the hydrogen atom in three dimensions (section 6.1), it was pointed out that the
correct energy levels were obtained despite having made three significant approximations in
the theoretical development. A similar situation arose in a recent paper [24] concerning the
application of Bogomolny’sT -operator to a circular harmonic oscillator plus 1/r2 potential.
For that system it was possible to write down an exact transfer operator, which led to the
exact energy eigenvalues without making any approximations. It was then shown, with the
help of the Poisson summation formula, that the exact transfer operator could be written as
an infinite sum of certain integrals, and that the leading term in this sum was the same as
Bogomolny’s transfer operator. Further, it was shown that improving the stationary phase
approximation leads to corrections to the energy eigenvalues that involve higher powers of
h̄ than the leading term. In short, the semiclassical result agreed with the exact quantum
result simply because corrections to the semiclassical approximation (which are nonzero)
and to the stationary phase approximation (which are also nonzero) were not evaluated.
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Presumably, if corrections to all the approximations were evaluated systematically, they
would cancel each other in all orders of ¯h.

It seems likely that we are dealing with a similar situation for the hydrogen atom in two
and three dimensions, and for the harmonic oscillator with a singular magnetic flux line. For
these systems we have not yet written down an exact transfer operator, which would make
feasible an analysis similar to that of [24]. Nevertheless, if the EBK energy eigenvalue is
regarded as the leading term of a semiclassical expansion in increasing powers of ¯h, it is
perhaps not so surprising that, in some cases, it agrees with the exact quantum result.
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Appendix A. Equivalence ofσ with the Maslov index in EBK quantization

In this appendix we consider the indexσm = µm+ νm introduced following equation (3.15)
for a particle in two dimensions, and the indexσl = µl + νl defined in equation (5.25) for
a particle in three dimensions. In both cases we consider a particle confined inside a finite
region either by a smooth potential or a hard-wall boundary. From the definitions of theµ

andν indices we show thatσm andσl have the values one would compute from the simple
rules for obtaining the Maslov index in EBK quantization.

For two-dimensional systems, consider a particle moving in a smooth potentialV (r).
Figure A1 shows typical trajectories along with trajectories having slightly larger and slightly
smaller angular momenta than the main trajectory. The trajectory with smaller angular
momentum approaches more closely to the origin, but on the outward leg also ventures
farther away from the origin. In the course of doing so, it must necessarily intersect the
trajectory with larger angular momentum. Thus, there is a focal point andµm is thereby
incremented by 1. There are then two possibilities. Before returning to the Poincaré circle,
the two orbits may intersect yet again, leading toµm = 2, as shown in figure A1(a). If this
happens one observes that the angle traversed is greater for the larger angular momentum,
so that∂2S/∂γ 2 > 0 andνm = 0. On the other hand, there may be no further intersection
so thatµm = 1, as illustrated in figure A1(b). In this case one observes that∂2S/∂γ 2 < 0
so thatνm = 1. In either event we haveσm = 2, which is the same as the value for the
Maslov index in EBK quantization obtained by counting 1 for each of the turning points of
the radial motion.

We have performed numerical studies for two-dimensional systems having potentials of
the formV (r) ∼ ±rk, where the plus sign is assumed fork > 0 and the minus sign for
k < 0 (so that the potential is attractive). Our calculations show that for−1 < k < 2 one
findsµm = 2 andνm = 0, while for−2 < k < −1 and 2< k <∞ one findsµm = 1 and
νm = 1. The casesk = −1 andk = 2, which are self-focusing, are marginal for the present
analysis.

The case of a hard wall may be approximated by taking the limitk → ∞. However,
when considering both largek and infinitesimally close trajectories, one must be careful
about the order in which the limits are taken. For any fixedk, no matter how large, we can
take the two nearby angular momenta close enough to the main trajectory that we obtain
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Figure A1. Examples of trajectories in two dimensions which start from an arbitrary pointφ

on the Poincaŕe circle and return (in the same sense) to the Poincaré circle at the pointφ′. In
each case there is a main trajectory together with trajectories having slightly larger and slightly
smaller angular momenta. Figure A1(a) was computed for the potentialV (r) ∼ rk with k = 0.5.
Figure A1(b) was computed forV (r) ∼ rk with k = 3.5.

σm = 2, in conformity with the previous discussion. On the other hand, if we consider
two fixed angular momenta, no matter how close, we can makek large enough that the
two trajectories no longer intersect on the outer loop. This is the appropriate analysis for
a disk with infinitely hard walls. In this caseµm = 2 from the collision with the hard
wall (Dirichlet boundary conditions), whileνm = 1, giving the resultσm = 3. This agrees
with the result for the EBK Maslov index obtained by counting 1 for the soft turnaround
at the inner turning point and 2 for the hard turnaround at the disk boundary. The same
analysis applies even if the motion is not force-free within the disk. For example, one
could include a uniform magnetic field, or a flux line, or a harmonic potential out to the
disk radius. As long as the trajectory bounces off the disk boundary,σm = 3, but if the
particle avoids colliding with the boundary, the discussion in the previous paragraph will
apply andσm = 2.

Turning now to three-dimensional systems with a smooth potential, we recall that the
Maslov indexσl was defined in equation (5.25) for the two different classes of trajectories.
We now show that, for soft potentials, this leads to the resultσl = 2 in all cases.

For given points� and�′ on the Poincaŕe sphere, a trajectory from� to �′ lies in
the plane containing these points and the origin. Focal points arising from variations within
the plane of this trajectory yield the resultµl + νl = 2 from the preceding analysis. In
three dimensions, however, there may exist an additional focal point lying on the straight
line from the point� to the origin. One can see that, provided the particle traverses an
angle betweenπ and 2π in moving along the trajectory for specifiedE andL2, it will
intersect this line at a point on the opposite side of the origin from�. Similar trajectories
in all planes containing� and the origin will intersect at this point, which is, therefore, a
focal point. In this case,µl must be incremented by 1, givingµl + νl = 3. But the angle
traversed by the particle in this case isξl = 2π − γl , which means the trajectory belongs
to the classξl = 2πjl − γl with jl = 1. Hence, from equation (5.25), the Maslov index is
σl = 2. Note that if the particle makes an additional circuit around the origin (corresponding
to ξl = 2πjl − γl with jl = 2) there will be two additional focal points on the line joining
� to the origin (on both sides of the origin), but from (5.25) the Maslov index will still
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be σl = 2. Clearly this generalizes to any number of complete circuits around the origin
within the time of one cycle of the radial motion.

If the angle traversed by the particle in moving along the trajectory specified byE and
L2 lies between 0 andπ , there is no focal point of the type described in the preceding
paragraph. The angle traversed isξl = γl + 2πjl with jl = 0, and equation (5.25) gives
σl = 2. If there are additional circuits around the origin corresponding toξl = γl + 2πjl ,
with jl = 1, 2, . . . , one can easily see thatµl must be incremented by 2 for each circuit,
but from equation (5.25), the Maslov index remainsσl = 2. Thus, we have shown that
σl = 2 for all possible trajectories in a soft potential. This result is the same as would
be obtained from the simple EBK rule of counting 1 for each radial turning point of the
effective potentialV (r)+ L2/(2r2).

If the outer radial turning point is replaced by a hard-wall collision with the boundary
(Dirichlet boundary condition on the wavefunction), the above analysis still holds up to the
point of colliding with the boundary. As for the two-dimensional systems, the hard-wall
collision requires incrementingµl by 1, giving the resultσl = 3. This is the EBK result
from the simple rule of counting 1 for the soft turnaround at the inner radial turning point
plus 2 for the collision with the boundary.

Appendix B. The determinant of second derivatives ofS

In this appendix we evaluate the determinant of second derivatives of the action, which
constitutes the amplitude of the three-dimensional transfer operator:

det
∂2S

∂�∂�′
=
∣∣∣∣ ∂2S
∂θ∂θ ′

∂2S
∂θ∂φ′

∂2S
∂φ∂θ ′

∂2S
∂φ∂φ′

∣∣∣∣ . (B.1)

Here S = S(ξ
(j)
± ;E), which, throughξ (j)± , depends on the angleγ introduced just after

equation (5.4). Sinceγ is the angle subtended at the origin by the points� and�′ on the
Poincaŕe sphere, we have

cosγ = sinθ sinθ ′ cos(φ − φ′)+ cosθ cosθ ′ 06 γ 6 π. (B.2)

Our objective is to express the determinant in terms ofγ .
First, let us write

∂S

∂θ
= ∂S

∂γ

∂γ

∂θ

∂2S

∂θ∂θ ′
= ∂2S

∂γ 2

∂γ

∂θ

∂γ

∂θ ′
+ ∂S

∂γ

∂2γ

∂θ∂θ ′
.

(B.3)

It will greatly simplify the calculation to evaluate the second derivatives assuming that
θ = θ ′ = π/2. This means that the polar axis of the spherical polar coordinate system is
chosen to be perpendicular to the plane containing the origin and the arbitrarily chosen points
(R,�) and(R,�′) on the PSS. Because of the spherical symmetry, the result obtained will
be valid for any orientation of the axes of the spherical polar coordinate system. When
θ = θ ′ = π/2, one finds that∂γ /∂θ = ∂γ /∂θ ′ = 0 and∂2γ /(∂θ∂θ ′) = −1/ sinγ . Hence,(

∂2S

∂θ∂θ ′

)
θ=θ ′=π/2

= − 1

sinγ

∂S

∂γ
. (B.4)
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The other second derivatives can be evaluated in the same way. We obtain(
∂2S

∂θ∂φ′

)
θ=θ ′=π/2

=
(
∂2S

∂φ∂θ ′

)
θ=θ ′=π/2

= 0(
∂2S

∂φ∂φ′

)
θ=θ ′=π/2

= − ∂
2S

∂γ 2
.

(B.5)

Hence, the determinant in (B.1) has the value given in equation (5.5).
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